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ABSTRACT 
We present SoundSense, an approach to detect 3D gestures 
using ultrasonic rangefinders.  Compared to other computer 
vision and proximity sensors techniques, our method con-
sumes less power, which is suitable for mobiles devices, 
while retaining 82.2% cross-validation accuracy. Through a 
16-participant design study, we identified the average oper-
ating distance from both the user’s hand and face to the 
smartphone or tablet when performing mid-air gestures. We 
compared machine learning algorithms SVM and HMM for 
recognition accuracy. We have implemented SoundSense, 
which works in real-time on Android tablet. Qualitative 
feedback is also presented from a 6-participants usability 
study. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Input devices and strategies. 
General terms: Design, Human Factors 
Keywords: Ultrasound, rangefinders, 3D gesture, bare-
hand gestures 

INTRODUCTION 
On modern mobile devices like smartphones and tablets, 
the capacitive touch screen is the dominant input method.  
However, there are situations when it is not convenient for 
the user to use direct touch input. For example, when the 
user is cooking or eating, she or he wouldn’t want to touch 
the screen with greasy hands. In other cases, it is handy to 
control the device when it is in a distance away. A user 
might want to shut down the alarm immediately while 
he/she is away from the device. The problem would be 
solved if we can manipulate the device by means other than 
touch input. 
Computer vision and speech input are available options.  
Techniques have been developed for tracking hand gesture 
by camera videos. Nevertheless, computer vision methods 
are often vulnerable to lighting condition and also require 
larger power consumption, which is less suitable for mobile 
devices. Voice input enabled by speech recognition is 

available on devices like Apple iPhone 4S. However, it is 
vulnerable to the noisy environment. 
We present SoundSense, which use ultrasonic sensing 
techniques to detect above-screen bare-hand gestures. Not 
only the user can manipulate the mobile devices without 
actually touching the screen, but also no additional gadget 
is required on the user’s hands. Ultrasound sensing tech-
nique is immune to lighting condition and noisy environ-
ment. It is also more power efficient than other hardware 
components like camera and proximity sensor. (See Table 1) 
While our objective is to detect above-screen gesture, the 
resolution requirements may not be as high as tasks like 
precise positioning or selection. A set of 12 gestures is de-
signed, presenting 6 degree-of-freedom in 3D space.  Fig-
ure 1 presents the SoundSense prototype. The 4 ultrasonic 
rangefinders mounted on the Android tablet device provide 
4 distance values. Comparing to the method of Doppler 
ultrasonic sonar, rangefinders provides the actual distance 
in addition to the movements. 
It is a problem to recognize the beginning and the end of a 
3D gesture. The problem is also referred as the clutching 
problem. A trigger algorithm is designed to mark the be-
ginning of the gesture: the users are asked to cover an arbi-
trary sensor for a short period before a gesture movement.   

 
Figure 1: SoundSense Prototype consists of four ul-
trasonic rangefinders (pointed by the arrows) and 
an Android tablet. The application in the screen is 
used in the usability test. 

 
 
	  



 

 

Once the beginning of a gesture is identified, the machine 
learning algorithms is capable of analyzing the time se-
quence of the distance values. The recognition performance 
and the usability test indicate that SoundSense is a feasible 
solution for ultrasonic gesture recognition.  
Our paper makes the following contributions: 1) using ul-
trasonic rangefinders to recognize 3D bare-hand gestures 
on mobile devices, 2) identify the operating distance of 3D 
gestures on smartphone and tablet, 3) distance threshold is 
used as gesture delimiter to solve the clutching problem, 
and 4) evaluation of 2 3D gestures recognition implementa-
tions (HMM, SVM).  

RELATED WORKS 
Our work relates to previous work in two categories:  First, 
approaches of above-screen bare-hand gesture recognition 
on mobile devices are presented and compared. Second, 
there are works that combined ultrasonic sensing tech-
niques with mobile devices, by using built-in speakers and 
microphones as well as external sensors. 

Ultrasound Gesture 
Kreczmer [9] proposed 4 bare-hand gestures to interact 
with a robot which are recognized by ultrasonic rangefind-
ers. “Approach me” and “go away” gestures are linear hand 
movements toward and away from the ultrasonic range-
finders. “Turn left” and “turn right” gestures are horizontal 
linear hand movements. Both two categories of gestures are 
recognized by heuristic algorithm based on the speed and 
the direction of the hand movement. 
Gupta et al. [6] leveraged built-in speaker and microphone 
in commodity devices to sense in-air gesture. Inaudible 
tone was generated, which gets frequency-shifted when it 
reflects off moving objects like the hand due to the Doppler 
effect. Such shift was measured with the microphone to 
infer 5 gestures. 

3D gestures 
Other options to recognize the above-screen bare-hand ges-
tures include computer vision and proximity sensors. Mi-
crosoft Kinect features a combination of RGB camera and 
depth sensor to provide 3D motion tracking that includes 
bare-hand gestures. Mariappan et al. [12] implemented a 
computer vision engine that are capable of hand tracking on 

Android mobile devices by using the built-in camera of the 
smartphone. 
Kim et al. [8] utilized four proximity sensors onto a wrist 
watch, arranged to facing up in a cross shape, to sense hov-
ering gestures above the watch. 9 Gestures around the wrist 
watch is designed, consisting of combinations of passing 
the area above the watch forward and backward for one or 
two times, changing directions when above the watch, cov-
ering all sensors and rolling around the watch. The digital 
high/low data collected by the four proximity sensors are 
passed to GART [10] HMM recognition model via Blue-
tooth, with the calculation carried out in a remote computer.  
A comparison of above methods is shown in Table 1. 
A challenge of above-screen gesture is to distinguish inten-
tional movements from other noise. Choosing a gesture 
delimiter to mark the start and end of a movement is a solu-
tion. Good gesture delimiter design should prevent natural 
human movements, like clutching, from triggering the ges-
ture recognition. The delimiter itself should remain simple 
and easy to perform [2]. Gestures recognized by computer 
vision algorithms often use pinch [2,15] or grasp [14] as the 
delimiter. Others may design gestures that are essentially 
clutch-free [11]. Visual feedbacks are shown after recog-
nizing the gesture delimiter to inform the user. 

Ultrasound and Mobile devices 
Borriello et al. [4] combine wireless networking and mi-
crophone interface of a mobile device to perform room-
level positioning. Wireless data and ultrasound pulses were 
generated from the PCs in the room. A PDA carried by the 
user listened to both signal and calculated the indoor posi-
tion according to it. There was no special hardware re-
quired. 
Arentz et al. [1] achieved short range directional data-
communication on a smartphone using built-in speakers 
and microphones. The digital signals are encoded into ul-
trasound with different pulse width.  The data transmission 
rate is limited by the A/D and D/A sampling rate.  Bihler et 
al. [3] used ultrasonic signals which sent by a cheap, stand-
alone emitter for indoor positioning. The built-in micro-
phone of smartphone was the basis of the proximity detec-
tion system. 

 Ultrasonic Range-
finder 

Proximity Sensor Computer Vision 
(single camera) 

Depth camera (Ki-
nect) 

Cost $3.15 * 4 = $12.6 (*) $8 * 4 No addition cost Approx. $56 (*) 
Power consumption 8.82 * 4 mW 23.2 * 4 mW About 185 mW 12.96 W  
Working range 10cm ~ 600cm 5cm ~ 20cm [GW] Depends on algorithm 

and camera resolu-
tion 

1.2m ~ 3.5m 

Vulnerable to lighting 
condition 

NO NO YES YES (IR interference) 

Distance information YES NO NO YES 
Sampling rate 20 Hz 125 Hz 30 fps 30 fps 

Table 1: Comparison between methods of bare-hand gesture recognition on mobile devices (*): bill-of-material 



 

 

GESTURE DESIGN 
We designed 12 3D bard-hand above-screen gestures, 
which is shown in Figure 2.  There are 2 categories of ges-
tures. The first group (a~f of figure 2) includes linear 
movements on 3 axes, namely R2L, L2R, T2B, B2T, N2F, 
F2N. The second group consists of rotation on xy, yz, xz 
planes, namely CW,  CCW,  RCW, RCCW, PCW, and 
PCCW. All these gestures form a 6 degree-of-freedom 3D 
interaction. As traditional 2D touch screen gestures like 
R2L, L2R are still available in 3D version, they are also 
extended to the third dimension. 

FIRST APPRAOCH 
In the first approach, we tried to build a ultrasonic range 
finder by the native speaker and microphone of a 
smartphone. Most modern mobile devices are equipped 
with speakers and microphones.  Although they were de-
signed for audible sound, it is also available for ultrasound.  
For a A/D converter sampling rate 44 kHz device, it is ca-
pable for processing 22 kHz signals according to Nyquist-
Shannon sampling theorem. 
The approach is suitable for proximity detection, but not 
available for range finding. We used 21 kHz as the fre-
quency of the ultrasonic signal.  The signal of the specific 
frequency is extracted by Gortzel algorithm. A pulse of X 
microseconds ultrasound pulse is sent and the microphone 
detects the reflection. In theory, we can calculate the time-

of-flight of the ultrasound by measuring the time difference.  
However, the sampling rate of mobile devices is not 
enough to provide the required precision.  In order to detect 
an object 17 cm above the screen, the time difference is 1 
millisecond for the speed of sound is 340 m/s. There are 
only 44 samples in the period, which is much smaller than 
the 256-sample window of frequency analysis and leads to 
large error. We also tried to make use of the amplitude of 
the reflected signal, but the amplitude is so small that only 
proximity detection can be satisfied.  To conclude, the low 
amplitude of the ultrasound signal and the low sampling 
rate of mobile device make it difficult to build an ultrasonic 
rangefinder with native hardware.  

SECOND APPROACH 
Additional ultrasonic rangefinders are used in the second 
approach.  4 MB1010-LV-MaxSonar-EZ1 ultrasonic range-
finders from MaxBotix provide the distance information 
about the objects above the screen surface.  Each of them is 
placed on the center of the edges of the Motorola Xoom.  
These sensors are configured in simultaneous operation 
mode to avoid possible inference within sensors.  Arduino 
Mega ADK first collect data then transfer to Android tablet 
after preprocessed.  Every rangefinder reports the distance 
in the frequency of 20 Hz and forms a 4-vector. Typical 
data is like (198, 187, 20, 32) with the unit in centimeter.  

 
Figure 2: 12 Gestures of SoundSense. (a)-(d) are linear movements on 3 axes: R2L (right-to-left), L2R (left-to-right), 
T2B (top-to-bottom), B2T (bottom-to-top), N2F (near-to-far), F2N (far-to-near). SoundSense also supports 3D rotation 
gestures (g)-(l): CCW (counter-clockwise), CW (clockwise), RCW (roll-clockwise), RCCW (roll-counter-clockwise), 
PCW (pitch-clockwise), PCCW (pitch-counter-clockwise).  



 

 

By analyzing the sequence of such data we can recognize 
the user gestures. 
We found that it is necessary to identify foreground signals 
from background signals. An ultrasonic rangefinder is able 
to detect object from 0 - 600 cm. While it is fully capable 
of detecting bare-hand gestures in foreground, other signals 
in background such as people walking from behind may 
also appear in the readings of the sensors. In this case, 
background signals are unwanted and inferences to gesture 
recognizing. 

Design Study 
The goal of the design study is to provide guidelines for 
gesture recognizing.  Actual user data were gathered while 
the users were performing bare-hand above-screen gestures.  
3 sets of data were collected: 1) the distance from hand to 
device, 2) the distance from face to device, and 3) the dura-
tion of the gestures. The measurement of the distance is 
shown in Figure 3. iPad 2 and iPhone 4 were used in the 
study, representing smartphone and tablet of screen size 
3.5” and 9.7”, respectively. 
Experiment. These data are used to distinguish foreground 
gesture events from the background noise. The distance 
between screen and hand provides the information of pos-
sible gesture signal. Meanwhile, the distance between 
screen and face forms a lower bound of background signals.  
In addition, the duration time of gestures is in study for the 
parameter of gesture recognizing. 
We hadn’t implemented a functional prototype in this stage; 
the proxy method was used to simulate the bare-hand ges-
ture interaction. Remote control software (Veency) was 
installed in both iPad and iPhone so that we can control the 
devices from our laptops. When the study participant per-
forms a gesture, we make the correspond action on our 
computer. By telling the participants that we are talking 
notes for the study, the user believed that they were able to 
control the iPhone and iPad with bare-hand above-screen 
gestures. 

The device was put on a rack, which is 135 centimeters 
above the ground. The user was standing throughout the 
experiments, so that the user could move to a conformable 
distance easily. Also, the participants were asked to step 
back from the device after finishing a single task. Therefore, 
the user was forced to move again and prevent the infer-
ence from the previous task. 
Participants were asked to perform both text reading and 
photograph browsing.  The font size and line height for text 
reading task is 16px / 28px for iPhone and iPad, respective-
ly, which is the same as the iBook app. Full-screen pictures 
are shown in the picture browsing. We believe that the text-
reading task may require the shortest distance while the 
picture browsing may require the longest distance.  The text 
reading task utilized B2T and T2B gestures for page-up and 
page-down. R2L and L2R gestures are used in photograph 
browsing. Each participant performed one trial using an 
iPhone 4 and one trial using an iPad 2. The order of the 
devices and the tasks were both counter balanced across 
participants. 
We recruited 16 participants (12 male, 4 female), from our 
university population. The participants’ age ranged from 20 
to 36. The average height of the participants is 172 centi-
meters. All of them have the experience with touch screen 
gestures.  
Study Result. Figure 4 and 5 shows the histogram of the 
distance between the device to hand and to face for both 
iPhone and iPad.  Only the average distance of each person 
is taken into account. The data of two tasks (reading and 
photo browsing) were combined together in the graph. The 
average distance from iPhone to hand and to face is 3.35 
cm (SD 2.69 cm) and 27.82 cm (SD 7.42 cm), respectively.  
For iPad, the average distance to hand and to face is 4.30 
cm (SD 3.53 cm) and 31.10 cm (SD 6.76 cm), respectively.  
As we can see in the figure, there is a valley at about 20 cm 
so that we can split the foreground signal with background 
signal by setting up a threshold. The average duration of 
gestures is 0.4 seconds, providing a guideline for actual 
recognition. 

 
Figure 4: Histogram of user distance to the iPhone 
device.  

 
Figure 3: Captured image of design study.  (a) and 
(b) are device-to-face and device-to-hand distance, 
respectively. The ruler image is shot at the exact 
position and camera settings. It is composited in 
Photoshop in order to get the distance readings. 
One black-and-white bar on the lower side of the 
ruler is 10 centimeters long. 



 

 

During the experiment with iPhone, some of the partici-
pants complained about the screen size of iPhone are hardly 
readable. They pointed out that they would not use iPhone 
from such distance, and the hand obscures the screen when 
doing gestures. IPad, on the other hand, does not have such 
problem. Therefore, we decided to extend our work on tab-
lets instead of phone devices. 
We decided to place 4 sensors on the middle of each edge 
of the device. Though the number of sensors should be as 
least as possible, it is required that the 12 gestures should 
be efficiently recognized. We noticed that out 5 of our 16 
participants wave their hands only in small angle. Starting 
from the center, their hands only passes one of the 4 edges 
when doing gesture R2L and L2R. Thus, 4 is the minimum 
number if we want to detect movements from every possi-
ble direction. 

Gesture Delimiter 
Proximity distance information is used as the gesture de-
limiter to indicate the beginning of a gesture. Before each 
gesture starts, we count the number of frames the distance 
value being lower than the threshold. The threshold value is 
determined by the design study above, which is 20 cm. A 
gesture is marked as started if a single sensor is under the 
threshold for 3 consecutive frames (150 milliseconds).  
Once a gesture is started, a time window of 30 frames (1.5 
seconds) is recorded for training and prediction. While a 
short time window is desired for faster recognition time, 
the number of the frames is determined by the gesture 
recognition method introduced below to provide higher 
accuracy. These parameters are chosen to be as unobtrusive 
as possible to the user, while maintaining the robustness of 
the gesture delimiter. This empirical solution also makes 
use of the depth information provided by the rangefinders, 
which is not possible with proximity sensors or the Doppler 
effect method. 

Gesture Recognize Method 
Two methods for gesture recognizing were implemented 
and compared: hidden Markov model (HMM), and support 

vector machine (SVM). We chose to utilize HMM given 
past success in previous work using them to model com-
plex time series data [8]. SVM as a popular machine learn-
ing algorithm is implemented and compared with the HMM 
method. 
The same training data is used for both SVM and HMM 
method. We recruited 16 participants (12 male, 4 female), 
from our university population. The participants’ age 
ranged from 21 to 26. The average height of the partici-
pants is 170.5 centimeters. 3 participants are left-handed.  
The participants are demonstrated for the trigger method 
and the movements of all 12 gestures. A single trial con-
sists of 12 gestures, and each participants were ask to rec-
ord 2 trials of training data. A total of 32 training data were 
recorded for each gesture. 
HMM. The Java library jahmm1 is used for our HMM ap-
proach. 12 gestures are trained into 12 separate models.  
Each model consists of 10 states. Since we consider first 
order finite difference on values of 4 sensors, there are to-
tally 8 variables in each observation and they are represent-
ed by a 8-dimensional multivariate Gaussian distribution. 
The first 4 dimensions are the sensor values of the current 
time frame, while the last 4 dimensions are the difference 
with the previous frame to take inter-frame relations into 
account. K-Means algorithm, which is provided by jahmm, 
is used to generate a rough model by clustering on the dis-
tribution of data.  After that, we use Balm-Welch algorithm 
to iterate 100 times for training and improve the model. 
SVM. We used Dynamic Time-Alignment Kernel (DTAK) 
[13] in LIBSVM [5] for our SVM approach.  DTAK com-
bined with radial basis function (RBF) enables non-linear 
time alignment for time series data, which is suitable for 
our application. 12 gestures are trained into a single multi-
class SVM model. Each single sequential record is a vector 
with variant length, where each element is a four-
dimensional vector that corresponds with four sensors val-
ue at the time frame. For the multi-class classification, 
though libsvm uses one-against-one method, we used 
DAGSVM [7] to reduce the computational complexity for 
mobile devices and still get good precision. We chose C = 
2, γ = 0.00048828125 for LIBSVM parameter based on our 
experiment result, which was performed by a grid search 
with 5-fold cross-validation.  

Performance 
The recognition accuracy of HMM and SVM is 61.9% and 
82.2%, respectively. The confusion matrix of HMM and 
SVM are shown in Table 2 and Table 3.  Both results are 
conducted from a 5-fold cross-validation.   The rows show 
the gesture the user was instructed to perform and columns 
show the classified result.  The not available (n/a) indicates 
there are no or more than one gestures was recognized dur-
ing the test period.  

                                                             
1 http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/ 

 
Figure 5: Histogram of user distance to the iPad de-
vice.  



 

 

The 4 simple gestures U2D, D2U, L2R, R2L have a higher 
accuracy than other gestures.  RCW, RCCW, PCW, PCCW 
are harder to recognize since they all consists of z-axis 
movement as well as movements on x- or y-axis.  If the z- 
axis movement is not clear, it would fallback to its 2D ver-
sion (ex: PCCW → D2U).  Otherwise if the performed ges-
ture lacks of x- or y-axis movement, it would most likely 
recognized as N2F or F2N. HMM method doesn’t work 
well on circulation gestures such as CW and CCW because 
of the state transitional nature of the model. HMM may 
recognize only one of the 4 possible starting point of CW 
and CCW gestures. 

EVALUATION 
We conducted an usability test to find out if the performan-
ce is acceptable when the gesture is put in practical use.  8 
participants (5 male, 3 female) were recruited to perform 2 
tasks. One task is to manipulate Google Map application.  
Starting from the entrance of our campus, the user are 
asked to move the view to our department using linear and 
rotation movement gestures, CW, and CCW. The other task 
is using the rotation gestures (CCW, CW, RCW, RCCW, 
PCW and PCCW) to find out the colors of the 6 surfaces of 
a 3D cube. 
Before the test, we demonstrated all the 12 gestures to the 
participant.  A practice time of at most 5 minutes were 
given to the participant.  The test starts as soon as the par-
ticipants were familiar and comfortable with the gestures.  
After the test, a short interview collects the qualitative 
feedback of the participant. 
4 questions are asked in the short interview: 1) what do you 
think about the recognition time and the accuracy?  2) Is 
the gesture design straightforward? 3) What do you think 
about the trigger method? 4) What gestures are awkward to 
perform?  What gestures can be performed smoothly?  5) 
Could you think of an application for the rotation gestures 
(i.e. RCW, RCCW, PCW, PCCW) ?  

Result 
5 of 8 participants agree that the accuracy of the gesture 
recognition is acceptable. However, 4 of the participants do 
not support nor against that our gesture design is straight-
forward. 3 of them pointed out that in the cube application, 
they cannot imagine their movements crossing behind the 
cube.  It seems more intuitive for them to swipe the 3D 
cube, as the cube being placed somewhere ahead in a dis-
tance.  4 participants thought the response time of gesture 
recognition is not desirable. Two of them expected that the 
response should be synchronous to the screen response.  
For example, the map application should pan at the same 
time the user performed the gesture, not after the gesture 
was finished. 
Two participants mentioned that the triggered hint really 
helped them performing recognizable gestures. “But the 
visual feedback should not be too eye-catching”, said par-
ticipant P3, “Maybe one little indicator is good enough. I 
do not like to be distracted from what we are doing.”  3 out 
of 8 participants mentioned the trigger involves cognitive 
efforts, especially for F2N. However, another participant 
pointed out that F2N gesture is actually quite easy to per-
form after her getting used of this. 
3 users prefer the linear gestures (L2R, etc.). Two of the 
participants thought CW and CCW are quite easy to per-
form, owing to its low error rate and that it is clutch-free.  
P1 reported that rotations involving back-and-forth (z-axis) 
movements lead to fatigue. P2 pointed out that she would 
rather perform only a part of the rotation movements; a 
semi-circle arc or a quarter-circle arc should be enough to 
express the rotation command.  
When asked upon the application of 3D gestures, 5 users 
thought of 3D programs like 3D model viewers. Interac-
tions between users and the 3D model before a 3D display 
screen can be used in indoor navigation, astronomy explo-
ration, or 3D product showcase. 

 U2D D2U L2R N2F R2L F2N CW CCW RCW RCCW PCW PCCW n/a 
U2D 22 1 0 1 0 0 2 2 0 0 3 1 0 
D2U 0 23 0 0 0 0 1 1 0 0 0 7 0 
L2R 0 0 19 0 0 0 6 4 2 1 0 0 0 
N2F 2 2 0 12 0 10 0 0 2 0 1 3 0 
R2L 0 0 0 0 20 0 3 2 5 1 0 1 0 
F2N 1 1 0 6 0 12 0 0 1 1 7 2 1 
CW 0 3 1 0 0 0 15 13 0 0 0 0 0 
CCW 0 1 0 0 1 0 7 16 2 3 1 1 0 
RCW 0 0 0 0 1 0 3 2 23 2 1 0 0 
RCCW 0 0 1 0 2 0 0 0 4 24 1 0 0 
PCW 0 1 0 0 0 0 0 0 1 0 27 3 0 
PCCW 0 4 0 1 0 0 0 1 0 0 2 24 0 

Table 2: Confusion matrix of HMM method. 

 U2D D2U L2R N2F R2L F2N CW CCW RCW RCCW PCW PCCW n/a 
U2D 32 0 0 0 0 0 0 0 0 0 0 0 0 
D2U 0 27 0 1 0 0 0 0 0 0 0 4 0 
L2R 0 0 28 0 0 0 3 1 0 0 0 0 0 
N2F 0 1 0 27 0 0 0 0 0 2 1 1 0 
R2L 0 0 0 0 27 0 2 0 3 0 0 0 0 
F2N 0 0 0 2 0 25 0 0 0 2 0 2 1 
CW 0 0 1 1 0 0 26 0 1 1 1 1 0 
CCW 0 2 0 0 1 0 1 24 0 3 1 0 0 
RCW 0 0 0 0 1 0 3 0 25 1 2 0 0 
RCCW 0 0 1 0 0 1 0 1 1 27 0 1 0 
PCW 0 1 0 1 0 2 0 0 0 0 24 4 0 
PCCW 0 3 0 2 0 2 0 0 0 0 2 23 0 

Table 3: Confusion matrix of SVM method. 



 

 

DISCUSSION 
From the usability test we observed that if the body height 
much higher or lower to the average height of training data. 
Poses which participants are used to also plays a big role in 
recognition accuracy. If a particular pose have not been 
presented in the training data, it is most unlikely that the 
pose would be correctly identified. 
Personalized model may help improve the recognition ac-
curacy. We found that the personal gesture movements are 
consistent during different trials. Therefore, adaptive 
method may be applied for gaining a higher accuracy while 
not requiring a bootstrap training phase. 
Though ultrasonic sensors are immune to lighting condition 
and noisy environment, there are some limitations. First, 
the directivity of ultrasonic sensor is not as high as the 
proximity sensor; the beam cone would diverge after a cer-
tain distance from the source and leads to some false posi-
tive recognitions. In addition, the ultrasonic rangefinders 
may interfere other ultrasonic rangefinders in the same 
space if they are not properly synchronized. 

CONCLUSION AND FUTURE WORK 
We have presented SoundSense, a 3D gesture recognition 
system on mobile devices. We completed a 16-person de-
sign study to understand the behavior of users for such ges-
tures. A functional prototype is implemented on tablet sup-
porting real-time recognition and operations. Gesture de-
limiter is introduced for solving the clutching problem. We 
compared two recognition methods: SVM and HMM, and 
concluded that SVM with DTAK method leads to the best 
result.  Qualitative study shows the usability of the system 
on both map and 3D model applications.  
While only uni-manual gestures are discussed in the paper, 
it is possible to extend our work to bi-manual gestures.  In 
addition, the distance information may be further extended 
as a continuous value controller, which may be desirable 
for applications like volume control. 
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